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1. UNUWOBMQUU@N 
The recent paper by Stuart and O’Neill [4] is concerned 

with determining the optimum over-relaxation coefficient 
in the numerical relaxation of the omega equation. These 
authors do not consider some well-known theoretical 
aspects of iteration procedures. At  least, from the peda- 
gogic point of view, it is instructive to reanalyze their 
problem. 

They consider the omega equation in the form 

(1) 
d2W 

B ( p ) V : w + ~ = Q ( x ,  Y ,  PI. 

The application of centered differences to (1) yields 
the finite difference form: 

ut, j + 1  , p + w z + i . f . p + w I ,  i - i , p + u t - i .  j.p-K;jP w l j p  

+&?P [ W z , j , p + A p + % .  1, P - A P ] = L ~ ~ P J  (2) 
where 

a2 K . .  = 
‘jP m2B ( p )  ( A p f  

L p = -  a2 
m 2 B ( p )  G t j p ‘  

The horizontal grid size is a=Ax=Ay; Ap is the vertical 
grid interval and m is map factor, taken to be unity. 
Equation (2 )  is the complete three-dimensional equation. 
Stuart and Q’Neill also consider the special two-dimen- 
sional case, K i j p = O ,  and the one-dimensional equation, 
B ( p )  = 0, whose finite difference form is 

Ut, 2 ,  p + A p - - u i . j ,  p +  ui,j.  a-Ar,=(Ap)2Gijp. (3) 

Note the minus sign is a correction of a misprint from 
the original paper. The subscripts i , j  can be dropped 
from (3) without any loss of generality. 

If the left-hand side of (1) or (3) is denoted I’(w), a 
residual, RN, may be defined 

RN= r(#) -%c5p, (4) 

where N is the number of scans in the iteration procedure. 
This notation is misleading since R is dependent, in 
actual application, on N and N+ 1, as we shall see. 

The relaxation technique consists of correcting each w 
using the relation 

wN+‘= uN+aRN, (5) 

which is assumed to be valid for every point ( i , j ,p ) ;  
CY is the over-relaxation factor. In  practice, the initial 
guess w o  is zero for all w.  Note that (5 )  is linear in w i j p :  

At this point it is necessary to leave the discussion 
of the numerical solution of the omega equation and recall 
some theorems concerning the iterative solution of linear 
equations. Faddeeva [2] is an excellent source for this 
discussion. Let us consider a set of n linear equations in 
the form 

X=BX+F, (6) 

where 6 is the matrix of coefficients, IF the column matrix 
or vector of constants, and X the column matrix of n. 
unknowns. The Qauss-Jacoby or Qrdinary Process of 
Iteration consists of writing (6) as 

J p + l ,  =&‘k’+F,  (7) 

which in an explicit form we mean 

n 

j=1 
xi’+’) =x afjxp) +ff. (8 )  

The process of iteration consists of choosing a certain 
vector X(O) and finding X(l), X(2), etc., until for a pre- 
assigned e t  

IxIE+”- xi (k)  ( < e i  for all i. 

Faddeeva gives us the fundamental theorem: For con- 
vergence of the process of iteration with a n y  initial vector 
X(O) and with a n y  value of the vector IF, i t  i s  necessary and 
su$cient that all eigenvalues of the matrix 6 be less than  
uni ty  in modulus. This theorem is quite important and the 
proof is given by Faddeeva. 

The Gauss-Seidel iterative method is similar to the 
ordinary iterative process except that in computing the 
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(k+ 1) approximation to  xi, one takes into consideration 
the (k + 1) th approximations already computed to  the 
components a, 22, . . . xi-l. Equation (8) is written for 
the Gauss-Seidel method 
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Let us write the equation (6) in the form 

X=(B+C)X+IF, (10) 

where the only non-zero elements of I5 are the elements uij 
below the main diagonal and C contains as non-zero ele- 
ments the diagonal elements uti and the elements aij 
above the main diagonal. Using these definitions for B 
and C, the Gauss-Seidel process (9) becomes 

t (11) p+-” =BX‘“”+C~‘k’+IF 

or, rearranging, 

(12) p + 1 ,  - -(I- I5)-1[ C P  +IF] = MX”) + G. 

Hence the Gauss-Seidel method, (ll), is equivalent to 
applying the ordinary process of iteration to (12) where 
M plays the role of the matrix A in the fundamental 
theorem and G=(II-iB)-T. 

Using this background and the well-known fact (e.g. 
Varga [5 ] )  that the speed of convergence is directly 
dependent on the spectral radius, i.e., the absolute value 
of maximum eigenvalue of A or M as applicable to a 
particular case, we now return to the over-relaxation of 
the omega equation as considered by Stuart and Q’Neill. 
First we shall consider the one-dimensional case, then the 
two-dimensional case and, finally, the three-dimensional 
case. 

9. ONE-DUMENSUONAL CASE 
The insertion of equation (3) in (4) yields 

(13) WgT“k+” =W‘” +a[~wm“”’+~~T‘’”~-~] 
where fiT=[ul, 0 2 ,  ma, . . . w l ]  (read WT as transpose of 
W).  We are considering an arbitrary number of levels, 1, 
a t  which omega is to be determined. The matrices D and 
E are of order 1 and have the form 

o . . . .  
0 

1 

E= 

‘-2 

0 

0 
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1 0 . .  . a  
2 1 . .  . e  

-2 1 

. . . . .  0 - 2  

We can only presuppose that (13) represents the process 
used by Stuart and @Neil1 under the additional empirical 
requirement that a=O when IRNIIEl where E is their 
present tolerance. This empirical alteration to the usual 
extrapolated Leibmann relaxation scheme leads to a 
difficulty in performing an exact theoretical analysis. 
Here we assume that the correction, RN, is applied even 
though IR”I<E for some wi. As a principle of faith, we, 
intuitively, believe that the theoretical analysis is appli- 
cable to the approximation scheme. Stuart and O’Xeill 
state that there is no difference in their results for the 
cutoff and optimum value of the over-relaxation param- 
eter, a, as compared to other estimates, and this 
strengthens our supposition. 

- 
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FIGURE 1.-Spectral radius, p(M), as a function of the over-relaxa- 
tion coefficient, OL, for the 1-D omega equation. The line from 
0.5 to 1 is common to all curves. The value of the number of 
levels, I ,  for 1-2(1)20 specities the appropriate curve. 
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FIGURE 2.-The number of levels, 1, as a function of the optimum 

over-relaxation coefficient, aopt ,  with I= 1(1)20 for the 1-D case. 
As l - t a ,  aopl  must approach 1.0. 

We now consider a to  be specified and note that (13) 
is equivalent to (11) if 

x= w 
B=aD 

C=I+aE 

F=-aL. 

Thus, the convergence of (13) depends on the spectral 
radius of 

M=(I- B)-’C= ( I-aD)-’( I t a E ) .  (14) 

The cutoff a’s, i.e., the allowable bounds on a for con- 
vergence, are determined by finding the values of a 
which permit the spectral radius of M, p(M), to be 1 
and -1. A routine analysis shows that, in this simple 
case, O < a < l  restricts Ip(M) 15 1.  The two-dimensional 
case and the three-dimensional case are not easily analyzed 
by hand. In this simple case, the allowable range of a is 
not dependent on I, the number of levels and indeed, as 
we shall see, this conclusion follows for the 2-D case also. 

The determination of the optimum value of w requires 
more ingenuity. The suggested procedure is to specify 
O < w < l  and determine p(M) and, thus, find the value 
of w which minimizes p(M). In brief, a was specified 
between 0 and 1 and I was allowed to vary from 2 to 20. 
Figure 1 was constructed from the computer results. 
The case 1=4 corresponds to the six-level model of 
Stuart and O’Neill. The optimum a is 0.63. Figure 2 
shows the optimum a (a,,,) as a function of 1. Stuart and 
O’Neill conclude that “the optimum a for the 1-D equa- 
tion would probably show only slight variations from one 
grid to another.” This conclusion is very misleading. 

Figure 2 shows the effect of the number of levels, 1, on 
aopt; as I increases aopt approaches 1.0. 

Note, since the convergence of (11) is independent of 
F and X(O), the convergence of the physical problem (13) 
is independent of L,= ( A P ) ~  G,, and the initial guess, W(O). 
Since the omega equation is linear, we should not be 
surprised that convergence is independent of the forcing 
function or the initial guess. However, in general, we shall 
see that the optimum omega will depend on the number 
of grid points and, in the 3-dimensional case, on other 
physical parameters. Naturally, the number of iterations 
required should be dependent on our initial guess, W(O), 
since if the process will converge with a particular choice 
of a, then a “close guess” to the desired W will result in 
rapid convergence. But for arbitrary a, the.speed of con- 
vergence should only be related to p(M). 

3. TWO-DIMENSIONAL CASE 
The omega equation becomes 

v&= G(z,Y,P)lB(P) * (15) 

The centered finite difference equation in matrix form 
for over-relaxation is 

W(L+l) W(W +,[DW(&++” +EWW -L] (16) 

where WT=[wll, 012 ,  . . . , wR, 021, 022, . . ., 0 2 n f  - a - 9 w d  
There are other orders which are allowable, e.g., see 
Fox [3] for a discussion of this aspect of the problem. 
The special case As=Ay=a is considered and there are 
n X r  total points on a particular rectangular pressure 
surf ace. 

D is of order r X n  and has the form 
0 

D’ 0 

I D’. 

where D’, 0, I are square matrices of order n. I is the 
identity matrix, 0 is the null matrix and 

‘0 0 . .  . . 0’ 

1 0  

0 1  

0 0  

, 0 . . . . . 1 0  

286-236 0-68-4 
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The matrix E has the form 
E ' I  O . . .  

0 E' I 

. . . .  

. o  

E' I 

O E  
where E', I, 0 are square matrices of order n and 

E' 

-4 1 0 

0 -4 1 

0' 

-4 1 

0 . . . . .  0 - 4 .  

L=(a2/B(p)) [ g t , j , p ]  and g f , j . p  is an element of G f , j , p .  

The over-relaxation scheme for (16) is similar to the 
Gauss-Seidel method given by (11) if we equate 

x=w 
B=aD 
C=I+aE 
F=-aL. 

Xius, as before, convergence 01 (16) is dependent only 
on tho spectra! radius of 

M= (I-B)-' C=  (I-aD)-' (I+aE). (17) 

Note, since D and E are independent of Ax, Ay, W and 
the forcing function, convergence is independent of W(O), 
the initial guess, the grid-spacing (when Ax= Ay) , and 
the forcing function. 

Now, since we desire to use an over-relaxation scheme, 
a>%. Therefore, the cutoff 01's are easily found by allow- 
ing 01 to vary from 0 to 1 and by determining p(M), 
using an available matrix subroutine. The optimum a is 
found by the above procedure, since as we allow a to 
take on values [ O ,  11, p(M) will be found also. The mini- 
mum value of p ( M )  shall be taken'to be related to the 
optimum a. 

Following Stuart and O'Neill, let n=r; Le., consider 
only square regions. Look first a t  the trivial case, n=l 
where M= 1 -4a. Hence O<a< restricts p(M) < 1 and 
the optimum 01 is 0.25. From the analysis of Carre [l] and 
the 1-D case, we expect, as n increases, the cutoffs to 
remain the same and the optimum 01 to  approach 0.5. 
Figure 3 was constructed from the computer analysis for 
n=2(1)10. Note, for n=10, M is of order 100 and con- 
siderable computer storage is required. 

I I 0.0 I I I I 

0.0 0.125 0.250 0.375 0.500 

a 
FIGURE 3.-Spectral radius, p(M) ft9 a function of the over-relaxation 

coefficient, a, for the 2-D omega equation. The line from 0.25 
to 0.5 is common to all curves. The value of the number of grid 
points, n, for n= 1(1)10 specifies the appropriate curve. 

The results for aOpt are plotted in figure 4. The curve 
is extrapolated toward n=20. These results illustrate 
quite clearly that an understanding of the theory of 
iterative processes can provide considerable insight for 
understanding the over-relaxation procedure. For example, 
the sharp cutoff a found by Stuart and O'Neill is easily 
explained. We find that a must be less than 0.5 if p(M) 
is to be less than unity for all square grids and the size of 
the grid, n, is the only free parameter in the analysis. 
All the other physical parameters do not influence p(M). 
Therefore, if one plots the number of scans versus a) one 
must find a very sharp cutoff, because the number of 
scans must approach infinity as 0140.5. On any scale, an 
extremely rapid increase in the number of scans will result. 

4. THREE-DIMENSIONAL CASE 

The entire problem is a great deal more specialized as 
we shall see. The combination of equations (2), (4), and 
(5) leads to the matrix equation 

which is similar to  (16) except that 



James J. O'Brien 103 February 1968 

20 

I 
I 
I 
I 
I 

I 
I 
I 

0 
0.250 0.375 0.500 

a OPT 

FIGURE 4.-Thc number of grid points in a square array, n, as a 
function of the optimum over-rclaxation coefficient, aopr, with 
n=1(1)10 for the 2-D case. As n + m ,  aoPl must approach 0.5. 
Note, the function is extrapolated to n=20 based on Stuart and 
O'Neill's work. 

where P and Q are of order n X r X l  and D is exactly as 
that for (16). R, is a diagonal matrix 

In addition 

E, Rz O . . . . .  

Q=[o E, R,  

0 . . . . . . . . . 

where E,=E except that the diagonal elements of E' 
are - -KfLjp  instead of - 4 .  R q  in Q are as in P. An element 
of L is L,,,. 

Rearranging (18) we find 

W('+ ') = (I-aP)-'[ (I+ Q) W") - L]. (19) 

Hence, for this problem, M= (I-aP)-' (I+&) ; i.e., 
convergence is assured if p(M)<l. Note, however, in 
this problem that p(M) is a function of a, a, Ap, B ( p ) ,  
and the number of grid points. It is not dependent on the 
initial guess W(O), the boundary conditions and the forcing 
function. For a particular investigation, a, Ap, B(p) and 
the number of grid points would be specified from physical 
or economical considerations and, in principle, the opti- 
mum value of a can be found by allowing a to vary from 
0 to y2 and we can thus find the value of CY which mini- 
mizes p(M). 

I n  this special case, we feel it is not practical to per- 
form an analysis as performed for the 1-D and 2-D cases. 
The analysis can only be of interest to  a few investigators 
who might choose (1) a square region, (2) the identical 
profile of u, (3) the same pressure interval, etc. However, 
we can offer the following suggestions. First, the work of 
Carre [l] should be reviewed by all investigators who are 
interested in this problem. Carre outlines a practical 
procedure to determine the optimum relaxation coefficient 
as the numerical solution of an elliptic equation is being 
accomplished. His techniques are based on a sound theo- 
retical understanding of the iterative process. 

Secondly, we must concur with Stuart and O'Neill 
that the discrepancy between their results and the 
theoretical results are easily explained by the distinctly 
different physical problem analyzed by them. Finally, 
the strange result for the 1.5" grid must be suspect since 
if we consider the trivial case, n=1, o<a<2 / (4+2KLj , ) .  
Now, since only a is varied, the maximum a must decrease 
as a increases. This was found for a=1,2,3 degrees, but 
not for the 1.5-degree case. 

5. CONCLUSION 
In  brief, we have demonstrated the importance of 

various physical parameters on the convergence of the 
omega equation in one, two, and three dimensions. It is 
conceptually possible to  analyze the empirical results of 
Stuart and O'Neill using well-known theoretical aspects 
of iterative methods for solving systems of linear equa- 
tions on a computer. 

It is recognized that the empirical approach of Stuart 
and O'Neill may be the most feasible way to determine 
the optimum over-relaxation coefficient. However, this 
practical attack must be tempered with a knowledge of 
the theoretical basis of iterative processes. Such a blend 
is outlined by Carre [I]. 
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We are indebted to  Dr. Q’Brien [l]  for calling the work 
of C a r d  [2] to the attention of us and perhaps of other 
investigators. Our interest in the omega equation stems 
from a desire to use this equation to obtain diagnostic 
vertical motions for careful analysis of the three-dimen- 
sional structure of atmospheric systems. Having started 
such studies late in 1960 prior to the work of Carre and 
prior to knowledge of Miyakoda’s [3] work, I was forced 
into the more empirical approach for finding the optimum 
over-relaxation factor, aopl, as mentioned in our paper 
(Stuart and @Neil1 [4]). Since some knowledge of the 
over-relaxation factor was needed for our work, we decided 
to seasch a bit for aOpt.  We tested the 1-D and 2-D cases 
more for completeness and to show that our relaxation 
technique fitted the known theoretical results. Suffice it to 
say that our paper reports on the results of an aopt study 
for a particular grid and stability profile and we hope other 
investigators will benefit by Card’s paper and our results. 
Indeed we have followed the approach suggested by 
Q’Brien at  the end of his section 4, but without the aid of 
Carr6’s work. 

Recently I have extended the model to yield omega a t  
nine interior levels for the 2’ grid (Le., N,=N,=18, 
N,= 11, A p =  10 cb., and for the standard atmosphere). 
ao,l=0.15 was found with the sharp cutoff near 0.20. 
Again aoDt was found fit a much lower value than the 0.33 
given by Miyakoda’s [3].  It is hoped that the results for 
aOpl obtained for our grid model will be of aid to others 
using very similar models for obtaining omega. 
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